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Crash Consistency: FSCK and Journaling

As we’ve seen thus far, the file system manages a set of data struc-
tures to implement the expected abstractions: files, directories, and
all of the other metadata needed to support the basic abstraction that
we expect from a file system. Unlike most data structures (for exam-
ple, those found in memory of a running program), file system data
structures must persist, i.e., they must survive over the long haul,
stored on devices that retain data despite power loss (such as hard
disks or flash-based SSDs).

One major challenge faced by a file system is how to update per-
sistent data structures despite the presence of a power loss or system
crash. Specifically, what happens if, right in the middle of updating
on-disk structures, someone trips over the power cord and the ma-
chine loses power? Or the OS encounters a bug and crashes? Because
of power losses and crashes, updating a persistent data structure can
be quite tricky, and leads to a new problem in file system implemen-
tation, known as the crash-consistency problem.

The problem is quite simple. Imagine you have to update two on-
disk structures, A and B, in order to complete a particular operation.
Because the disk only services a single request at a time, one of these
requests will reach the disk first (either A or B). If the system crashes
or loses power after one write completes, the on-disk structure will
be left in an inconsistent state. And thus, we have a problem that all
file systems need to solve:
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THE CRUX: HOW TO UPDATE THE DISK DESPITE CRASHES
The system may crash or lose power between any two writes,
and thus the on-disk state may only partially get updated. After the
crash, the system boots and wishes to mount the file system again
(in order to access files and such). Given that crashes can occur at
arbitrary points in time, how do we ensure the file system keeps the
on-disk image in a reasonable state?

In this chapter, we’ll describe this problem in more detail, and
look at some methods file systems have used to overcome it. We’ll
begin by examining the approach taken by older file systems, known
as fsck or the file system checker. We’ll then turn our attention to
another approach, known as journaling (also known by database
people as write-ahead logging), a technique which adds a little bit
of overhead to each write but recovers more quickly from crashes or
power losses. We will discuss the basic machinery of journaling, in-
cluding a few different flavors of journaling that Linux ext3 [T98] (a
modern journaling file system) implements.

A Detailed Example

To start things off, let’s look at an example. Let’s say we are trying
to append a block to an existing file. For simplicity, let's assume we
are using a simplified version Linux ext2 [T98], which is an intellec-
tual descendent of the FFS file system [MJLF84].

Before we do this write, the file is on disk in the form of an inode,
one (or more) existing data blocks, and some bitmaps that mark the
inode and data blocks as in-use. This might look something like this
(on a tiny file system):

i-node | data | inodes | data blocks
bitmap | bitmap | |
010000 | 000010 | -- Ivl -- == == -—= | == —-= ——= —= D1 -—-

Inside the first version of the inode (Iv1), we see:

owner : remzi
permissions : read-only
size HE
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pointer HE!

pointer : null
pointer : null
pointer : null

In this simplified inode, the size of the file is 1 (it has one block
allocated), the first direct pointer points to block 4 (the first data
block of the file, D1), and all three other direct pointers are set to
null (indicating that they are not used). Of course, real inodes have
many more fields; see previous chapters for more information.

Inside the data bitmap (B1), we have a bit indicating that data
block 4 is in use. And finally, of course, we see that disk block 4
holds the contents of the first block of the file (D1).

When we append to the file, we are adding a new data block to
it, and thus must update three on-disk structures: the inode (which
now must contain a pointer to the new block as well as an updated
size count to reflect the new size of the file), the new data block D2,
and a new version of the data bitmap to indicate that the new data
block has been allocated.

Thus, in the memory of the system, we have three blocks which
we must write to disk. The updated inode (inode version 2, or Iv2
for short) now looks like this:

owner : remzi
permissions : read-only
size H

pointer : 4

pointer : 5

pointer : null
pointer : null

The updated data bitmap (B2) now looks like this:

000011

Finally, there is the data block (D2), which is just filled with whatever
it is users put into files. Stolen music perhaps?

What we would like is for the final on-disk image of the file sys-
tem to look like this:

i-node | data | inodes | data blocks
bitmap | bitmap | |
010000 | o000O11 | -- Iv2 -~— - ——= —— | —— -— —— ——= D1 D2
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To achieve this transition, the file system must perform three sep-
arate writes to the disk, one each for the inode (Iv2), bitmap (B2), and
data block (D2). Note that these writes usually don’t happen imme-
diately when the user issues a write () system call; rather, the dirty
inode, bitmap, and new data will sit in main memory (in the page
cache or buffer cache) for some time first; then, when the file sys-
tem finally decides to write them to disk (after say 5 seconds or 30
seconds), the file system will issue the requisite write requests to the
disk. Unfortunately, a crash may occur and thus interfere with these
updates to the disk. In particular, if a crash happens after one or
two of these writes have taken place, but not all three, the file system
could be left in a funny state.

Crash Scenarios

To understand the problem better, let’s look at some example crash
scenarios. Imagine only a single write succeeds; there are thus three
possible outcomes, which we list here:

e Just the data block (D2) is written to disk. In this case, the
data is on disk, but there is no inode that points to it and no
bitmap that even says the block is allocated. Thus, it is as if the
write never occurred. This case is not a problem at all, from the

perspective of file-system crash consistency’.

o Just the updated inode (Iv2) is written to disk. In this case,
the inode points to the disk address (5) where D2 was about to
be written, but D2 has not yet been written there. Thus, if we
trust that pointer, we will read garbage data from the disk (the
old contents of disk address 5).

Further, we have a new problem, which we call a file-system
inconsistency. The on-disk bitmap is telling us that data block
5 has not been allocated, but the inode is saying that it has. This
disagreement in the file system data structures is an inconsis-
tency in the data structures of the file system; to use the file
system, we must somehow resolve this problem (more on that
below).

'However, it might be a problem for the user, who just lost some data!
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e Just the updated bitmap (B2) is written to disk. In this case,
the bitmap indicates that block 5 is allocated, but there is no in-
ode that points to it. Thus the file system is inconsistent again;
if left unresolved, this write would result in a space leak, as
block 5 would never be used by the file system.

There are also three more crash scenarios in this attempt to write
three blocks to disk. In these cases, two writes succeed and the last
one fails:

e The inode (Iv2) and bitmap (B2) are written to disk, but not
data (D2). In this case, the file system metadata is completely
consistent: the inode has a pointer to block 5, the bitmap in-
dicates that 5 is in use, and thus everything looks OK from the
perspective of the file system’s metadata. But there is one prob-
lem: 5 has garbage in it again.

e The inode (Iv2) and the data block (D2) are written, but not
the bitmap (B2). In this case, we have the inode pointing to the
correct data on disk, but again have an inconsistency between
the inode and the old version of the bitmap (B1). Thus, we once
again need to resolve the problem before using the file system.

e The bitmap (B2) and data block (D2) are written, but not the
inode (Iv2). In this case, we again have an inconsistency be-
tween the inode and the data bitmap. However, even though
the block was written and the bitmap indicates its usage, we
have no idea which file it belongs to, as no inode points to the
file.

The Crash Consistency Problem

Hopefully, from these crash scenarios, you can see the many prob-
lems that can occur to our on-disk file system image because of crashes:
we can have inconsistency in file system data structures; we can have
space leaks; we can return garbage data to a user; and so forth. What
we’d like to do ideally is move the file system from one consistent
state (e.g., before the file got appended to) to another atomically
(e.g., after the inode, bitmap, and new data block have been writ-
ten to disk). Unfortunately, we can’t do this easily because the disk
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only commits one write at a time, and crashes or power loss may oc-
cur between these updates. We call this general problem the crash-
consistency problem (we could also call it the consistent-update
problem).

Solution #1: The File System Checker

Early file systems took a simple approach to the file system up-
date problem. Basically, they decided to let inconsistencies happen
and then fix them later (when rebooting). A classic example of this
lazy approach is found in a tool that does this: fsck®. fsck is a UNIX
tool for finding such inconsistencies and repairing them [M86]; sim-
ilar tools to check and repair a disk partition exist on different sys-
tems. Note that such an approach can’t fix all problems; consider, for
example, the case above where the file system looks consistent but
the inode points to garbage data. The only real goal is to make sure
the file system metadata is internally consistent.

The tool fsck operates in a number of phases, as summarized
in McKusick and Kowalski’s paper [MK96]. It is run before the file
system is mounted and made available (fsck assumes that no other
file-system activity is on-going while it runs); once finished, the on-
disk file system should be consistent and thus can be made accessible
to users.

Here is a basic summary of what fsck does:

e Superblock: fsck first checks if the superblock looks reason-
able, mostly doing sanity checks such as making sure the file
system size is greater than the number of blocks allocated. Usu-
ally the goal of these sanity checks is to find a suspect (corrupt)
superblock; in this case, the system (or administrator) may de-
cide to use an alternate copy of the superblock.

e Free blocks: Next, fsck scans the inodes, indirect blocks, dou-
ble indirect blocks, etc., to build an understanding of which
blocks are currently allocated within the file system. It uses
this knowledge to produce a correct version of the allocation
bitmaps; thus, if there is any inconsistency between bitmaps

2Pronounced either “eff-ess-see-kay”, “eff-ess-check”, or, if you don’t like the tool,
“eff-suck”. Yes, serious professional people use this term.
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and inodes, it is resolved by trusting the information within
the inodes. The same type of check is performed for all the in-
odes, making sure that all inodes that look like they are in use
are marked as such in the inode bitmaps.

e Inodestate: Each inode is checked for corruption or other prob-
lems. For example, £sck makes sure that each allocated inode
has a valid type field (e.g., regular file, directory, symbolic link,
etc.). If there are problems with the inode fields that are not eas-
ily fixed, the inode is considered suspect and cleared by fsck;
the inode bitmap is correspondingly updated.

e Inode links: fsck also verifies the link count of each allo-
cated inode. As you may recall, the link count indicates the
number of different directories that contain a reference (i.e.,
a link) to this particular file. To verify the link count, fsck
scans through the entire directory tree, starting at the root di-
rectory, and builds its own link counts for every file and di-
rectory in the file system. If there is a mismatch between the
newly-calculated count and that found within an inode, cor-
rective action must be taken, usually by fixing the count within
the inode. If an allocated inode is discovered but no directory
refers to it, it is moved to the 1ost+found directory.

e Duplicates: £sck also checks for duplicate pointers, i.e., cases
where two different inodes refer to the same block. If one inode
is obviously bad, it may be cleared. Alternately, the pointed-to
block could be copied, thus giving each inode its own copy as
desired.

e Bad blocks: A check for bad block pointers is also performed
while scanning through the list of all pointers. A pointer is
considered “bad” if it obviously points to something outside its
valid range, e.g., it has an address that refers to a block greater
than the partition size. In this case, £sck can’t do anything too
intelligent; it just removes (clears) the pointer from the inode
or indirect block.

e Directory checks: fsck does not understand the contents of
user files; however, directories hold specifically formatted in-
formation created by the file system itself. Thus, fsck per-
forms additional integrity checks on the contents of each direc-

THREE
EASY
PIECES
(v0.6)

ARPACI-DUSSEAU



CRASH CONSISTENCY: FSCK AND JOURNALING

41.3

OPERATING
SYSTEMS

u

tory, making sure that “.” and “..” are the first entries, that each
inode referred to in a directory entry is allocated, and ensuring
that no directory is linked to more than once in the entire hier-
archy.

Asyou can see, building a working fsck requires intricate knowl-
edge of the file system; making sure such a piece of code works cor-
rectly in all cases can be challenging [G+08]. However, fsck (and sim-
ilar approaches) have a bigger and perhaps more fundamental prob-
lem: they are too slow. With a very large disk volume, scanning the
entire disk to find all the allocated blocks and read the entire direc-
tory tree may take many minutes or even hours. Thus, performance
of f£sck, as disks grew in capacity and RAIDs grew in popularity,
became prohibitive.

Worse, the basic premise of fsck seems irrational. Consider our
example above with just a few blocks being written to the disk; what
a waste to scan the entire disk just to see if one of those three writes
didn’t complete! It is kind of like dropping your keys on the floor
in your bedroom, and then commencing a search-the-entire-house-for-
keys recovery algorithm, starting in the basement and working your
way through every room. It works, but it certainly seems wasteful.
Thus, as disks (and multi-disk RAID systems) grew in size, people
started to look for other solutions.

Solution #2: Journaling (or Write-Ahead Logging)

Probably the most popular solution to the consistent update prob-
lem is to steal an idea from the world of database management sys-
tems. That idea, known as write-ahead logging, was invented to
address exactly this type of problem. In file systems, we usually call
write-ahead logging journaling for historical reasons. The first file
system to do this was Cedar [H87], though many modern file sys-
tems use the idea, including Linux ext3, reiserfs, IBM’s JFS, and Win-
dows NTFS.

The basic idea is as follows. When updating the disk, before over-
writing the structures in place, first write down a little note (some-
where else on the disk, in a well-known location) describing what
you are about to do. Writing this note is the “write ahead” part, and
we write it to a structure that we organize as a “log”; hence, write-
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ahead logging.

By writing the note to disk, you are guaranteeing that if a crash
takes places during the update (overwrite) of the structures you are
updating, you can go back and look at the note you made and try
again; thus, you will know exactly what to fix (and how to fix it)
after a crash, instead of having to scan the entire disk. By design,
journaling thus adds a bit of work during updates to greatly reduce
the amount of work required during recovery.

We'll now describe how Linux ext3, a popular journaling file sys-
tem, incorporates journaling into the file system. Most of the on-disk
structures are identical to Linux ext2, e.g., the disk is divided into
block groups, and each block group has an inode and data bitmap
as well as inodes and data blocks. The new key structure is the jour-
nal itself, which occupies some small amount of space within the
partition or on another device. Thus, an ext2 file system (without
journaling) looks like this:

Superblock | GroupO | Groupl | ... | GroupN

Assuming the journal is placed within the same file system im-
age®, an ext3 file system with a journal looks like this:

Superblock | Journal | GroupO | Groupl | ... | GroupN

The real difference s just the presence of the journal, and of course,
how it is used.

Data Journaling

Let’s look at a simple example to understand how data journaling
works. Data journaling is available as a mode with the Linux ext3
file system, from which much of this discussion is based.

Say we have our canonical update again, where we wish to write
the inode (Iv2), bitmap (B2), and data block (D2) to disk again. Before
writing them to their final disk locations, we are now first going to
write them to the log (a.k.a. journal). This is what this will look like
in the log:

TxBegin | Iv2 | B2 | D2 | TxEnd

3The journal can also be placed on a separate device.
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You can see we have written five blocks here. The transaction be-
gin (TxBegin) tells us about this update, including information about
the pending update to the file system (e.g., the final addresses of the
blocks Iv2, B2, and D2), as well as some kind of transaction iden-
tifier (TID). The middle three blocks just contain the exact contents
of the blocks themselves; this is known as physical logging as we
are putting the exact physical contents of the update in the journal
(an alternate idea, logical logging, puts a more compact logical rep-
resentation of the update in the journal, e.g., “this update wishes to
append data block D2 to file X”, which is a little more complex but
can save space in the log and perhaps improve performance). The
final block is a marker of the end of this transaction, and will also
contain the TID.

Once this transaction is safely on disk, we are ready to overwrite
the old structures in the file system; this process is called checkpoint-
ing. Thus, to checkpoint the file system (i.e., bring it up to date with
the pending update in the journal), we issue the writes Iv2, B2, and
D2 to their disk locations as seen above; if these writes complete suc-
cessfully, we have successfully checkpointed the the file system and
are basically done. Thus, our initial sequence of operations:

1. Journal write: Write the transaction (containing TxBegin, Iv2,
B2, D2, and TxEnd) to the log; wait for these writes to complete

2. Checkpoint: Write the update (e.g., Iv2, B2, D2) to the file sys-
tem proper

Things get a little trickier when a crash occurs during the writes to
the journal. Here, we are trying to write the set of blocks in the trans-
action (TxBegin|Iv2|B2|D2|TxEnd) to disk. One simple way to
do this would be to issue each one at a time, waiting for each to
complete, and then issuing the next. However, this is slow. Ideally,
we’d like to issue all five block writes at once, as this would turn five
writes into a single sequential write and thus be faster. However, this
is unsafe, for the following reason: given such a big write, the disk
internally may perform scheduling and complete small pieces of the
big write in any order. Thus, the disk internally may (1) write TxBe-
gin, Iv2, B2, and TxEnd and only later (2) write D2. Unfortunately,
if the disk loses power between (1) and (2), this is what ends up on
disk:

TxBegin (TID=1) | Iv2 | B2 | 2?2? | TxEnd (TID=1)

ARPACI-DUSSEAU
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ASIDE: FORCING WRITES TO DISK
To enforce ordering between two disk writes, modern file systems
have to take a few extra precautions. In olden times, forcing ordering
between two writes, A and B, was easy: just issue the write of A
to the disk, wait for the disk to interrupt the OS when the write is
complete, and then issue the write of B.
Things got slightly more complex due to the increased use of write
caches within disks. With write buffering enabled (sometimes called
immediate reporting), a disk will inform the OS the write is com-
plete when it simply has been placed in the disk’s memory cache,
and has not yet reached disk. If the OS then issues a subsequent
write, it is not guaranteed to reach the disk after previous writes;
thus ordering between writes is not preserved. One solution is to
disable write buffering. However, more modern systems take extra
precautions and issue explicit write barriers; such a barrier, when it
completes, guarantees that all writes issued before the barrier will
reach disk before any writes issued after the barrier.
All of this machinery requires a great deal of trust in the correct
operation of the disk. Unfortunately, recent research shows that
some disk manufacturers, in an effort to deliver “higher performing”
disks, explicitly ignore write-barrier requests, thus making the disks
seemingly run faster but at the risk of incorrect operation [R+11]. As
Kahan famously said, the fast almost always beats out the slow, even
if the fast is wrong.

Why is this a problem? Well, the transaction looks like a valid
transaction (it has a begin and an end with matching sequence num-
bers). Further, the file system can’t look at that fourth block and
know it is wrong; after all, it is arbitrary user data. Thus, if the sys-
tem now reboots and runs recovery, it will replay this transaction,
and ignorantly copy the contents of the garbage block "???” to the
location where D2 is supposed to live. This is bad for arbitrary user
data in a file; it is much worse if it happens to a critical piece of file
system, such as the superblock, which could render the file system
unmountable.

To avoid this problem, a journaling file system issues the transac-
tional write in two steps. First, it writes all blocks except the TxEnd
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ASIDE: OPTIMIZING LOG WRITES
You may have noticed a particular inefficiency of writing to the log.
Namely, the file system first has to write out the transaction-begin
block and contents of the transaction; only after these writes com-
plete can the file system send the transaction-end block to disk. The
performance impact is clear, if you think about how a disk works:
usually an extra rotation is incurred (think about why).
One of our former graduate students, Vijayan Prabhakaran, had a
simple idea to fix this problem [P+05]. When writing a transaction
to the journal, include a checksum of the contents of the journal in
the begin and end blocks. Doing so enables the file system to write
the entire transaction at once, without incurring a wait; if, during
recovery, the file system sees a mismatch in the computed checksum
versus the stored checksum in the transaction, it can conclude that a
crash occurred during the write of the transaction and thus discard
the file-system update. Thus, with a small tweak in the write protocol
and recovery system, a file system can achieve faster common-case
performance; on top of that, the system is slightly more reliable, as
any reads from the journal are now protected by a checksum.
This simple fix was attractive enough to gain the notice of Linux file
system developers, who then incorporated it into the next generation
Linux file system, called (you guessed it!) Linux ext4. It now ships on
millions of machines worldwide, including the Android handheld
platform. Thus, every time you write to disk on many Linux-based
systems, a little code developed at Wisconsin makes your system a
little faster and more reliable.

block to the journal, issuing these writes all at once. When these
writes complete, the journal will look something like this:

TxBegin (TID=1) | Iv2 | B2 | D2

When those writes complete, the file system issues the write of
the TxEnd block, thus leaving the journal in this final, safe state:

TxBegin (TID=1) | Iv2 | B2 | D2 | TxEnd (TID=1)

What you really need to understand here is the atomicity guar-
antee provided by the disk. It turns out that the disk guarantees
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that any 512-byte write will either happen or not (and never be half-
written); thus, to make sure the write of TxEnd is atomic, one should
make it a single 512-byte block. Thus, our current protocol to update
the file system, with each of its three phases labeled:

1. Journal write: Write the contents of the transaction (containing
TxBegin, and in our example, Iv2, B2, D2) to the log; wait for
writes to complete

2. Journal commit: Write the transaction commit block (contain-
ing TxEnd) to the log; wait for write to complete; transaction is
now committed

3. Checkpoint: Write the contents of the update (e.g., Iv2, B2, D2)
to the file system proper

Recovery

Of course, a crash may happen at any time during this sequence
of updates. If the crash happens before the transaction is written
safely to the log (i.e., before Step 2 above completes), then our job is
easy: that pending update is simply skipped. If the crash happens
after the transaction has committed to the log, but before the check-
point is complete, the file system can recover the update as follows.
When the system boots, the file system recovery process will scan the
log and look for transactions that have committed to the disk; these
transactions are thus replayed, with the file system again attempting
to write out the blocks in the transaction to their final on-disk loca-
tions. This form of logging is one of the simplest forms there is, and is
called redo logging. By recovering the committed transactions in the
journal, the file system ensures that the on-disk structures are consis-
tent, and thus can proceed by mounting the file system and readying
itself for new requests.

Note that it is thus OK for a crash to happen at any point during
checkpointing, even after some of the updates to the final locations of
the blocks have completed. In the worst case, some of these updates
are simply performed again during recovery. Because recovery is a
rare operation (only taking place after an unexpected system crash),

a few redundant writes are nothing to worry about®.

*Unless you worry about everything, in which case we can’t help you. Stop worry-
ing so much, it is unhealthy! But now you're probably worried about over-worrying.
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Batching Log Updates

You might have noticed that the basic protocol could add a lot of ex-
tra disk traffic. For example, imagine we create two files in a row,
called filel and file2, in the same directory. To create one file,
one has to update a number of on-disk structures, minimally includ-
ing: the inode bitmap (to allocated a new inode), the newly-created
inode of the file, the data block of the parent directory containing the
new directory entry, as well as the parent directory inode (which now
has a new modification time). With journaling, we logically commit
all of this information to the journal for each of our two file creations;
because the files are in the same directory, and let’s assume even have
inodes within the same inode block, this means that if we're not care-
ful, we'll end up writing these same blocks over and over.

To remedy this problem, ext3 does not commit each update to
disk one at a time. Rather, ext3 has a single on-going global transac-
tion which buffers such updates to the file system. In our example
above, when the two files are created, the file system just marks the
in-memory inode bitmap, inodes of the files, directory data, and di-
rectory inode as dirty, and adds them to the list of blocks that form
the current transaction. When it is finally time to write these blocks to
disk (say, after a timeout of 5 seconds), this single global transaction
is committed containing all of the updates described above. Thus, by
buffering updates, ext3 avoids excessive write traffic to disk in most
cases.

Making The Log Finite

We thus have arrived at a basic protocol for updating file-system on-
disk structures. The file system buffers updates in memory for some
time; when it is finally time to write to disk, the file system first care-
fully writes out the details of the transaction to the journal (a.k.a.
write-ahead log); after the transaction is complete, the file system
checkpoints those blocks to their final locations on disk.

However, the log is of a finite size. If we keep adding transactions
to it (as in the figure below), it will soon fill. And what do you think
happens then?

Tx1l | Tx2 | Tx3 | Tx4 | Tx5 |
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Two problems arise when the log becomes full. The first is sim-
pler: the larger the log, the longer recovery will take, as the recovery
process must replay all the transactions within the log in order to re-
cover. The second is more of an issue: when the log is full (or nearly
full), no further transactions can be committed to the disk, thus mak-
ing the file system “less than useful” (i.e., useless).

To address this problem, journaling file systems treat the log as a
circular data structure, re-using it over and over. To do so, the file
system must take action some time after a checkpoint. Specifically,
once a transaction has been checkpointed, the file system should free
it, allowing the log space to be reused. There are many ways to
achieve this end; for example, you could simply set a counter to the
value T in the a journal superblock (located at a fixed location in the
log) to indicate that transaction 7" is the current starting point in the
log. Thus, the journal looks something like this:

Superblock | Tx1l | Tx2 | Tx3 | Tx4 | Tx5 |

In the superblock, the journaling system records enough informa-
tion to know which transactions have not yet been checkpointed, and
thus reduces recovery time as well as enables re-use of the log in a
circular fashion. And thus we add another step to our basic protocol:

1. Journal write: Write the contents of the transaction (containing
TxBegin and the contents of the update) to the log; wait for
writes to complete

2. Journal commit: Write the transaction commit block (contain-
ing TxEnd) to the log; wait for write to complete; transaction is
now committed

3. Checkpoint: Write the contents of the update to the file system
proper

4. Free: Some time later, mark the transaction free in the journal

Thus we have our final data journaling protocol. But there is still
a problem: we are writing each data block to the disk twice, which
is a large cost to pay. Can you figure out a way to retain file-system
consistency without writing all data twice?
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Although recovery is now fast (scanning the journal and replaying
a few transactions as opposed to scanning the entire disk), normal
operation of the file system is slower. In particular, for each write to
disk, we are now also writing to the journal first, thus doubling write
traffic. Further, between writes to the journal and writes to the main
file system, there is a costly seek.

Because of the high cost of writing every data block to disk twice,
people have tried a few different things in order to speed up per-
formance. For example, the mode of journaling we described above
is often called data journaling (as in Linux ext3), as it journals all
user data (in addition to the metadata of the file system). A simpler
(and more common) form of journaling is sometimes called ordered
journaling (or just metadata journaling), and it is nearly the same,
except that user data is not written to the journal. Thus, when per-
forming the same update as above, the following would be written
to the journal:

TxBegin | Iv2 | B2 | TxEnd

The data block D2, previously written to the log, would instead
be written to the file system proper, thus avoiding the extra write.
This modification does raise an interesting question; when should
we write D2 to disk?

What if we write D2 to disk after the transaction (containing Iv2
and B2) completes? Unfortunately, this approach has a problem: it
may end up with a consistent file system but one that has Iv2 point-
ing to garbage data. Specifically, if the file system is writing Iv2, B2,
and D2 to disk and only manages to complete the first two writes
before crashing, D2 will not be on the disk. The file system will then
try to recover (but notice that D2 is not in the log). Thus, it will re-
play the writes to Iv2 and B2, and produce a consistent file system
(from the perspective of file-system metadata). However, Iv2 will be
pointing to garbage data.

Thus, to ensure this does not arise, ext3 (in ordered mode) writes
dirty data blocks (of regular files) to the disk first, before any related
metadata is written to disk. Specifically, the ordered mode protocol
is as follows:
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1. Data write: Write the data (e.g., D2) to its final location; wait
for this write to complete.

2. Journal metadata write: Write the contents of the transaction
(containing TxBegin, and in our example, Iv2, B2, but not D2)
to the log; wait for writes to complete

3. Journal commit: Write the transaction commit block (contain-
ing TxEnd) to the log; wait for write to complete; transaction is
now committed

4. Checkpoint metadata: Write the contents of the metadata up-
date (e.g., Iv2 and B2) to the file system proper

5. Free: Some time later, mark the transaction free in the journal

By forcing the data write first, ext3 guarantees that a pointer will
never point to garbage. Indeed, this rule of “write the pointed to
object before the object with the pointer to it” is at the core of con-
sistency, and is exploited even further by other crash consistency
schemes [GP94] (see below for details).

In most systems, metadata journaling (akin to ordered journal-
ing of ext3) is more popular than full data journaling. For example,
Windows NTFS and SGI's XFS both use non-ordered metadata jour-
naling. Linux ext3 gives you the option of choosing either data, or-
dered, or unordered modes (in unordered mode, data can be written
at any time, thus potentially letting inodes point to garbage). All of
these modes keep metadata consistent; they vary in their semantics
for user data.

Tricky Case: Block Reuse

There are some interesting corner cases that make journaling more
tricky, and thus are worth discussing. A number of them revolve
around block reuse; as Stephen Tweedie (one of the main forces be-
hind ext3) said, “What'’s the hideous part of the entire system? ... It’s
deleting files. Everything to do with delete is hairy. Everything to do
with delete... you have nightmares around what happens if blocks
get deleted and then reallocated.” [T00]

The particular example Tweedie gives is as follows. Suppose you
arejust using some form of metadata journaling (and thus data blocks
for files are not journaled). Let’s say you have a directory called
foo. The user adds an entry to foo (say by creating a file), and
thus the contents of foo (because directories are considered meta-
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data) are written to the log; say this was in data block 1000. Then the
user deletes everything in the directory as well as the directory itself,
thus freeing up block 1000 for reuse. Finally, the user creates a new
file (say foobar), which ends up reusing the same block (1000) that
used to belong to foo. The inode of foobar is committed to disk, as
is its data; note, however, because metadata journaling is in use, the
newly-written data in block 1000 in the file foobar is not journaled.

Now assume a crash occurs and all of this information is still in
the log. During replay, the recovery process simply replays every-
thing in the log, including the write of directory data in block 1000,
thus overwriting the user data in the block with old directory con-
tents! Clearly this is not a correct recovery action.

There are a number of solutions to this problem. One could, for
example, never reuse blocks until the delete of said blocks is check-
pointed out of the journal. What Linux ext3 does instead is to add
a new type of record to the journal, known as a revoke record. In
the case above, deleting the directory would cause a revoke record
to be written to the journal. When replaying the journal, the system
first scans for such revoke records; any such revoked data is never
replayed, thus avoiding the problem mentioned above.

Solution #3: Other Approaches

We've thus far described two options in keeping file system meta-
data consistent: a lazy approach based on fsck, and a more active
approach known as journaling. However, these are not the only two
approaches. One such approach, known as Soft Updates [GP9%4],
was introduced by Ganger and Patt. This approach carefully orders
all writes to the file system to ensure that the on-disk structures are
never left in an inconsistent state. For example, by writing a pointed-
to data block to disk before the inode that points to it, we can ensure
that the inode never points to garbage; similar rules can be derived
for all the structures of the file system. Implementing Soft Updates
can be a challenge, however; whereas the journaling layer described
above can be implemented with relatively little knowledge of the ex-
act file system structures, Soft Updates requires intricate knowledge
of each file system data structure and thus adds a fair amount of
complexity to the system.

Another approach is known as copy-on-write (yes, COW), and is
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used in a number of popular file systems, including Sun’s ZFS [B07].
This technique never overwrites files or directories in place; rather,
it places new updates to previously unused locations on disk. Af-
ter a number of updates are completed, COW file systems flip the
root structure of the file system to include pointers to the newly up-
dated structures. Doing so makes keeping the file system consistent
straightforward. We'll be learning more about this technique when
we discuss the log-structured file system (LFS) in a future chapter;
LFS was an early variant of a COW file system.

One final approach we just developed here at Wisconsin. In this
new technique, entitled backpointer-based consistency (or BBC), no
ordering is enforced between writes. To achieve consistency, an addi-
tional back pointer is added to every block in the system; for exam-
ple, each data block has a reference to the inode to which it belongs.
When accessing a file, the file system can determine if the file is con-
sistent by checking if the forward pointer (e.g., the address in the
inode or direct block) points to a block that refers back to it. If so,
everything must have safely reached disk and thus the file is consis-
tent; if not, the file is inconsistent, and an error is returned. By adding
back pointers to the file system, a new form of lazy crash consistency
can be attained; read the paper for more details [C+12].

Summary

We have introduced the problem of crash consistency, and dis-
cussed various approaches to attacking this problem. The older ap-
proach of building a file system checker works but is likely to slow to
recover on modern systems. Thus, many file systems now use jour-
naling. Journaling reduces recovery time from O(size-of-the-disk-
volume) to O(size-of-the-log), thus speeding recovery substantially
after a crash and restart. For this reason, many modern file sys-
tems use journaling. We have also seen that journaling can come
in many different forms; the most commonly used is ordered meta-
data journaling, which reduces the amount of traffic to the journal
while still preserving reasonable consistency guarantees for both file
system metadata as well as user data.
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